Rescaling of Spatio-Temporal Sensing in Eukaryotic Chemotaxis
نویسندگان
چکیده
Eukaryotic cells respond to a chemoattractant gradient by forming intracellular gradients of signaling molecules that reflect the extracellular chemical gradient-an ability called directional sensing. Quantitative experiments have revealed two characteristic input-output relations of the system: First, in a static chemoattractant gradient, the shapes of the intracellular gradients of the signaling molecules are determined by the relative steepness, rather than the absolute concentration, of the chemoattractant gradient along the cell body. Second, upon a spatially homogeneous temporal increase in the input stimulus, the intracellular signaling molecules are transiently activated such that the response magnitudes are dependent on fold changes of the stimulus, not on absolute levels. However, the underlying mechanism that endows the system with these response properties remains elusive. Here, by adopting a widely used modeling framework of directional sensing, local excitation and global inhibition (LEGI), we propose a hypothesis that the two rescaling behaviors stem from a single design principle, namely, invariance of the governing equations to a scale transformation of the input level. Analyses of the LEGI-based model reveal that the invariance can be divided into two parts, each of which is responsible for the respective response properties. Our hypothesis leads to an experimentally testable prediction that a system with the invariance detects relative steepness even in dynamic gradient stimuli as well as in static gradients. Furthermore, we show that the relation between the response properties and the scale invariance is general in that it can be implemented by models with different network topologies.
منابع مشابه
Correction: Rescaling of Spatio-Temporal Sensing in Eukaryotic Chemotaxis
[This corrects the article DOI: 10.1371/journal.pone.0164674.].
متن کاملSTCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملSpatio-temporal analysis of diurnal air temperature parameterization in Weather Stations over Iran
Diurnal air temperature modeling is a beneficial experimental and mathematical approach which can be used in many fields related to Geosciences. The modeling and spatio-temporal analysis of air Diurnal Temperature Cycle (DTC) was conducted using data obtained from 105 synoptic stations in Iran during the years 2013-2014 for the first time; the key variable for controlling the cosine term i...
متن کاملSpatio-temporal distribution of off-shore ships in the Pars Special Economic Energy Zone based on satellite imagery
Special Economic Zones (SEZs) are areas controlled by specific legislations so as toattain economic prosperity. These zones are commonly established and controlled bygovernment officials and are primarily characterized by growing population and developingtransport infrastructure. One relevant case is the Pars Special Economic Energy Zone(PSEEZ) situated in the south of Iran, on the northern sho...
متن کاملScaling and interleaving of subsystem Lyapunov exponents for spatio-temporal systems.
The computation of the entire Lyapunov spectrum for extended dynamical systems is a very time consuming task. If the system is in a chaotic spatio-temporal regime it is possible to approximately reconstruct the Lyapunov spectrum from the spectrum of a subsystem by a suitable rescaling in a very cost effective way. We compute the Lyapunov spectrum for the subsystem by truncating the original Jac...
متن کامل